ゼロ値予測に基づくDCT
演算数削減手法の提案とその評価

西田 敬宏 井上 弘士 Vasily G. Moshnyaga

発表の流れ

1. 背景・目的
2. DCT/量子化処理
3. ゼロ値予測に基づくDCT演算数削減手法
4. 実験評価
5. まとめ・今後の課題
背景

デジタルカメラ、携帯電話、など、など、の普及
バッテリ - 駆動時間の延長
チップ発熱の抑制
低消費エネルギー化は重要!

目的

画像圧縮符号化器 (MPEG) の低消費エネルギー化を実現
DCT処理に着目

ゼロ値予測に基づくDCT演算数削減手法の提案とその評価
MPEG符号化器

DCTの特徴
出現頻度に偏りが生じる
情報省略を行いやすい

入力データ(画素値)

出力データ(DCT係数)
2次元 DCT (8 x 8)

\[g_{k,j} = \sum_{i=0}^{7} C_{k(2i+1)} x_{i,j} \]
\[X_{k,l} = \sum_{j=0}^{7} C_{l(2j+1)} g_{k,j} \]

\[C_n = \begin{cases} 1/2\sqrt{2} & (n = 0) \\ \cos[\pi n/16]/2 & (n \neq 0) \end{cases} \]

量子化処理

高周波成分の値を0に近似し、情報量の削減を行う。量子化出力値 = 量子化入力値 / 量子化ステップ

量子化ステップ = 16

入力データ (DCT係数)

出力データ

1ブロック、64回の除算が必要
ゼロ値予測に基づくDCT演算数削減手法

- 量子化後、多くの高周波成分の値は0
- 自然画像で周波数が急激に変化する場面は少ない

DCT処理中に高周波成分が0となる部分を予測

DCT出力結果が連続N個0となった場合
残りのDCT係数を全て0と予測

例

0連続数N=2の場合

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
例

0連続数N=2の場合

DCT処理

0連続数N=2の場合

従来手法
8 ¥ 64 + 8 ¥ 64 = 1024回
1024回の積和

提案手法
35個のDCT係数演算削減
8 ¥ 64 + 8 ¥ 29 = 744回
280回の積和処理削減
量子化処理

量子化ステップ = 16

従来手法

提案手法

除算64回

除算29回

35回演算削減

提案手法の利点、欠点

利点
ゼロ値予測成功の場合、画質の劣化なしに演算削減

欠点
ゼロ値予測ミスの場合、画質の劣化
実験環境
実験データ

missa (76×144) 150Frame
foreman (76×144) 298Frame
carphone (176×144) 382Frame
salesman (352×288) 300Frame

実験 1
様々な適用方式を検討

<table>
<thead>
<tr>
<th>ゼロ値予測</th>
<th>輝度成分 (Y)</th>
<th>色差成分 (Cr,Cb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Y0+C</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Y3+C</td>
<td>3行目以降</td>
<td>□</td>
</tr>
<tr>
<td>Y4+C</td>
<td>4行目以降</td>
<td>□</td>
</tr>
</tbody>
</table>
DCT演算数 (N=9)

量子化演算数 (N=9)
PSNR \(N=9\)

結論（適用方式）
どの部分にゼロ値予測を適用するのか
演算数、画質（PSNR）、回路制御の3点を考慮

Y0+C方式を適用
実験2
ゼロ値予測の正確さの調査

画質の劣化は、いかにゼロ値予測を正しく行えるかに依存

最適なN値を選択

0連続数Nの値を変化

演算削減率（N = 1〜20）
結論 (ゼロ値予測の正確さ)

0連続数Nが小さいほど、演算数削減可能
0連続数Nが大きいほど、PSNRは向上

N=9が適している

画質の劣化 平均4.55dB

画像例

従来手法
PSNR=53.44dB

提案手法
PSNR=48.30dB

5.1dB劣化
従来と同じ画質（PSNR）

0連続数Nを増加

<table>
<thead>
<tr>
<th></th>
<th>DCT演算削減率（%）</th>
<th>量子化演算削減率（%）</th>
<th>PSNR劣化（dB）</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=9</td>
<td>21.06</td>
<td>43.06</td>
<td>4.55</td>
</tr>
<tr>
<td>N=17</td>
<td>12.88</td>
<td>26.43</td>
<td>0.86</td>
</tr>
</tbody>
</table>

ほぼ、画質の劣化なしに演算数削減

要求される画質によって、変更できる

まとめ

- DCT / 量子化の演算数削減手法を提案とその評価
 0連続数N=9の場合、DCT演算数を平均22%、量子化演算数を平均46%削減。PSNRは平均4.55dB劣化
 0連続数N=17の場合、DCT演算数を平均13%、量子化演算数を平均26%削減。PSNRは平均0.86dB劣化
今後の課題

- ゼロ値予測判定コスト
- より詳細な消費電力モデルを用いた評価
- 色々な画像データ（サイズの大）を用いた調査
並列処理

1行 (N=8以上) 全て0が出現した場合
ゼロ値予測を適用

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

並列処理

2行 (N=16以上) 全て0が出現した場合
ゼロ値予測を適用

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

16
DCT演算数（並列処理）

量子化演算（並列処理）
結論（並列処理）

<table>
<thead>
<tr>
<th></th>
<th>DCT演算削減率 (%)</th>
<th>量子化演算削減率 (%)</th>
<th>PSNR劣化 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1行(N=8)</td>
<td>19.76</td>
<td>43.40</td>
<td>4.66</td>
</tr>
<tr>
<td>2行(N=16)</td>
<td>11.11</td>
<td>25.65</td>
<td>0.89</td>
</tr>
</tbody>
</table>

並列処理でも、ゼロ値予測を適用可能

高速アルゴリズムにも適用可能
高速アルゴリズム

<table>
<thead>
<tr>
<th></th>
<th>演算削減率 (%)</th>
<th>量子化演算削減率 (%)</th>
<th>劣化 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCT</td>
<td>1行</td>
<td>15.65</td>
<td>34.76</td>
</tr>
<tr>
<td></td>
<td>2行</td>
<td>7.09</td>
<td>17.44</td>
</tr>
<tr>
<td>高速</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCT</td>
<td>1行</td>
<td>21.98</td>
<td>46.95</td>
</tr>
<tr>
<td></td>
<td>2行</td>
<td>11.73</td>
<td>25.51</td>
</tr>
</tbody>
</table>

実際の確率

残り全て0

絶対相関 積極相関 随伴相関 随伴相関
実際の確率
残り全て7

成功確率

連続数